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Abstract
We present a geometrical construction of the eight-parameter discrete Painlevé
equations. Our starting point is the E

(1)
8 affine Weyl group. We assume that the

multi-dimensional τ -function lives on the vertices of the weight lattice of this
group. We derive the bilinear equations related to the discrete Painlevé equation
in the form of nonautonomous Hirota–Miwa equations and the elementary
Miura transformations. The compatibility condition of the various Miura’s
that can be written leads to three types of equations: difference, multiplicative
(q) and another type where the parameters and the independent variable
enter through the arguments of elliptic functions. We write explicitly the
discrete equations in the first two cases and produce their degeneration through
coalescence of parameters.

PACS numbers: 02.30.Ik, 02.30.-f

1. Introduction

Discrete Painlevé (d-P) equations are far more complex (and more fundamental) than their
continuous counterparts. Soon after their discovery [1] it became clear that d-P exist in two
flavours, difference (δ-) equations and multiplicative (q-) equations, and that there are many
more than the six canonical continuous Painlevé (c-P) equations [2]. The latter fact led to
a nomenclature problem: since the integrable, nonautonomous mappings which are the d-P
were named after their continuous limits, which are c-P, we were faced with a proliferation
of discrete versions of P, in particular for the low-parameter ones. This was taken care of
partially by (a) finding correspondences between equations and (b) by showing that some of
the low-parameter d-P were indeed reductions of richer systems. However, the problem was
far from being solved and thus the question of classification became urgent.

The key to the classification of discrete Painlevé equations was to be found in a geometrical
approach [3]. This was suggested by the observation that (almost but not quite all) the
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d-P have the property of self-duality: the same equation governs the evolution along the
independent variable and along the Schlesinger-induced changes of parameters [4]. Moreover,
the observation that some of the difference P are just contiguity relations of continuous P

suggested that the geometrical description had to be given in terms of affine Weyl groups,
just as in the continuous case. This was first proposed in [5] under the name of the ‘Grand
Scheme’ description of d-P. The whole degeneration pattern linked to affine Weyl groups,
starting from the exceptional group E8, was empirically associated with the various discrete
P [6]. Recently, it has been put on a rigorous basis thanks to the work of Sakai [7]. He was in
fact the first to show explicitly that a third type of discrete P did exist, one where the parameters
and the independent variable enter through the arguments of elliptic functions (a fact that we
had anticipated on an intuitive, nonrigorous, basis).

Once the geometrical framework is fixed our task is far from finished. In order to derive
the d-P it does not suffice to say that their τ -functions live on the (weight) lattice of some
affine Weyl group. One must derive the bilinear equations which govern the evolutions. These
bilinear systems turn out to be nonautonomous Hirota–Miwa [8] equations (the compatibility
of which must be assessed). Next one must introduce the elementary Miura transformations
and, choosing an adequate path, obtain the nonlinear d-P. The proliferation of the d-P is thus
related not only to the abundance of the possible geometries but also to the fact that within
each of them one can define more than one evolution leading to a second-order system.

Since historically almost all the d-P were obtained before their geometrical classification,
the approach based on affine Weyl groups has not been used in order to derive the d-P. As a
matter of fact the discrete forms of the d-P up to q-PV were derived through a direct method
(deautonomization of a QRT form using the singularity confinement [9] criterion, a procedure
later confirmed with the aid of low-growth property [10]). They were shown later to be
described by various affine Weyl groups up to and including E

(1)
6 . Much later, the forms of

q-PVI and δ-PV [11] were obtained as an offshoot of the study of the quadratic relations of
c- and d-P [12]. These two equations were recently shown to be described by the E

(1)
7 [13]

affine Weyl group. Clearly what was missing was the explicit form of the system related to E8.
The complexity of these equations precludes any direct, brute-force, treatment and, in fact, the
geometrical description seems the only available approach. In what follows we shall show how,
based on the geometry of the affine Weyl group E

(1)
8 , one can derive the explicit forms of q-PVI

and δ-PV. We show that the richness of this exceptional group makes possible the existence
of an ‘elliptic’ discrete P. However, for the latter one can only present the bilinear form and
the Miura transformation, the full nonlinear expression corresponding to prohibitively long
calculations.

2. The geometry of the E(1)
8 weight lattice

Our various studies in the framework of what we have dubbed the Grand Scheme have shown
that the space pertinent to the description of a discrete P equation and its various Schlesingers
is the weight lattice of an affine Weyl group, i.e. the dual of the root system. In this paper we
shall consider the geometry of the space associated with E8. Our basic assumption is that the
τ -functions live on the points of the weight lattice of E(1)

8 . The coordinates of these points, in
the basis we consider, are either all integers or all half-integers, with the additional constraint
that the sum of all coordinates is even. The origin obviously satisfies these requirements. By
considering its nearest neighbours (NNs) we can thus find the smallest vectors that span the
lattice. It turns out that the origin has 240 NN τ that define 120 directions along which vectors
relating NN τ exist. We must point out here that the adjective nearest does not really apply
to these vectors which are actually the smallest ones; still we will call them NVs for ‘nearest-
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neighbour-connecting vectors’, a shorthand the reason for which will soon become obvious.
The 240 NNs of the origin have the following form. Some of them have two coordinates
ai = ±1, aj = ±1 while the other six vanish: clearly there are 112 of these, four for each
choice of i �= j ∈ {1, . . . , 8}, (defining 56 directions where NVs exist). Note that their squared
distance from the origin is 2, and thus the squared length of a NV is 2. The others have all
the coordinates nonzero and of absolute value 1/2, but with either sign. Again the squared
distance of each of these points from the origin is 8(1/4) = 2. There are only 128 such NNs,
and not 256 because of the selection rule that the sum of the coordinates must be even, which
means that the number of negative coordinates must be even. This defines 64 more directions
where NVs exist. Though the 120 NVs, in this specific basis, seem to belong to two classes,
this is not true; it is a pure artifact of the basis. In fact the NVs correspond to each other by
the symmetries of the underlying finite group E8. One way to convince oneself of this is to
notice that, not only do they all have the same squared length 2, but if we compute the scalar
product of a NV of either class with all the 119 others, we find that 63 are orthogonal, while
the 56 others have a scalar product ±1. Note that we never bother to assign a specific sign to
an NV: only its direction and length are of interest, so there are indeed 120 of them. In fact,
there is no consistent way to orient them so that the scalar product of two nonorthogonal NVs
is always 1, or always −1. Of course the whole argument presented here is not specific to the
origin: every τ has 240 NNs, along the 120 directions defined by the NVs.

Having defined the NNs and NVs we turn to the next-nearest neighbours (NNNs) of a given
τ . We can reach them by moving away from this τ by a vector which is as small as possible a sum
of NVs. This turns out to be the case if we add two orthogonal NVs (since the sum of two NVs
with scalar product−1 is again an NV). So the length of such a NNV is 2, since its squared length
is 4. It turns out that there are 1080 such vectors (up to an arbitrary sign) and 2160 NNNs of a
given τ . This number is obtained by considering the 120 × 63/2 pairs of mutually orthogonal
NVs, with either relative sign, and ignoring the global sign for NNVs, so we multiply by 2 for
them, and by 4 to find all NNNs. Each NNV, however, is obtained from seven distinct such
pairs, as can be shown in a straightforward way. For instance the NNV (2, 0, 0, 0, 0, 0, 0, 0) is
obtained from the seven pairs of NVs {(1, 0, . . . , 1, . . . , 0), (1, 0, . . . ,−1, . . . , 0)} where the
±1 are at any of the seven last positions. Again let us stress that though this NNV looks unique,
this is due to the particular basis we chose. All NNVs are fully equivalent, corresponding to
each other through the symmetries of the finite group E8. In this basis they seem to come
in three classes, eight similar to the one mentioned above, 560 with 4 zero coordinates and 4
coordinates ±1 (defining 70 choices for the positions of the nonzero coordinates and a factor
8 for three relative signs since we ignore the global sign) and finally 512 with one coordinate
±3/2 (say −3/2) in either of the eight positions, and seven coordinates ±1/2 with only six
free signs since the sum must be even (so there must be an odd number of plus signs).

3. Nonlinear variables, Hirota–Miwa equations and contiguity relations

In order to introduce the nonlinear variables (for which we will use the symbols X or
Y ) we will make the assumption that they are defined at points of the lattice which are
midpoints between one τ and one of its NNNs. For example, between the origin and its NNN
(2, 0, 0, 0, 0, 0, 0, 0) we have a nonlinear variable X defined at the point (1, 0, 0, 0, 0, 0, 0, 0).
It can be easily shown that X (and in fact any other such point) is at the midpoint not
only of the original pair, but of exactly eight pairs of τ sites which are in NNN position
with respect to each other (but not, in general, NNN of the origin). The eight pairs in this
precise example are the original one {(0, 0, 0, 0, 0, 0, 0, 0), (2, 0, 0, 0, 0, 0, 0, 0)} and seven
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of the form {(1, 0, . . . , 1, . . . , 0), (1, 0, . . . ,−1, . . . , 0)}, etc, where the second nonvanishing
coordinates is at any of the seven last positions. The eight vectors joining the two sites of each
pair are all distinct NNVs (their length is indeed 2). One can easily see that any two of them
are orthogonal. Thus there is no consistent orientation choice for these vectors.

The next step is to relate the nonlinear variable X to the τ . For each X we have eight
NNVs and we can introduce eight quantities Ci which are the scalar products of these vectors

and the position vector
−−→
O ′X. (Note here that the origin O ′ of this position vector need not

coincide with the origin of coordinates: it may well be shifted by eight arbitrary numbers
αi). However, as we explained above, the orientations are not determined, consequently there
exists an arbitrariness in the definition of the sign of each Ci : we can change any of the Ci to
its opposite value. Next, we introduce the quantities φi which are the products of the two τ at
the ends of each vector, and define

X = f (Cj )φi − f (Ci)φj

g(Cj )φi − g(Ci)φj

(3.1)

where the f (Ci) and g(Ci) are as yet undetermined functions (to which we will return later)
of their respective Ci . Note, however, that since the Ci are not determined better than up to a
sign, f (Ci) and g(Ci) must both be even (or possibly both odd, but without loss of generality
one can always assume even) functions of their argument.

There exist 28 different ways to write X in terms of the φi . By equating any two of these
expressions we obtain equations for the φi , i.e. for the product of the τ -functions:

(f (Cj )g(Ck) − f (Ck)g(Cj ))φi + (f (Ck)g(Ci) − f (Ci)g(Ck))φj + (f (Ci)g(Cj )

−f (Cj )g(Ci))φk = 0. (3.2)

The overdetermined system of equations (3.2) is a non-autonomous Hirota–Miwa
system [8] which describes completely the evolution of the multivariable τ -function in E

(1)
8 .

They are, in fact, the bilinear forms of the various equations that ‘live’ in E
(1)
8 . So far we have

not yet examined the question of the consistency of (3.2), which will impose further constraints
on the even functions f and g. This will be done in the next section.

For convenience, in what follows and whenever there is no ambiguity, we use the name of
a nonlinear variable to mean the point where this variable is defined. Consider the eight NNVs
around a given point like X = (1, 0, 0, 0, 0, 0, 0, 0), which, in this particular case happen just
to be twice the eight unit vectors of our basis. We can orient seven of them arbitrarily, and then
the orientation of the eighth one is fixed, so the sum of the oriented vectors is four times any
of the 27 (arbitrarily oriented) NVs of half-integer coordinates, along 64 directions. Consider
one of these vectors, for instance

−→
T = (1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2). We now

consider the point (3/4,−1/4,−1/4,−1/4,−1/4,−1/4,−1/4,−1/4) such that the vector
from it to the site of X is one-half the NV considered above. It turns out to be a valid nonlinear
site where we can define a nonlinear variable Y . This was not a priori obvious. For instance,
if we translate the site of X by one-half of one of the 56 other NVs, we would not end up at a
midpoint of two NNN τ , and no nonlinear variable could be defined there. Similarly to Y we
can introduce Y corresponding to the point (5/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4) such that−→
YX = −−→

T /2. Here, the overbar denotes a translation by the full NV,
−→
T . Since the point Y

is distant from the site of Y by a full NV, all the τ around Y are in the same positions with
respect to it as those around Y but not as around X. In fact, one can easily convince oneself
that the eight NNVs around Y and Y are identical, and have all their coordinates 1/2, but for
one coordinate −3/2 at any of the eight positions. They are symmetrical to the NNVs around
X with respect to the hyperplane orthogonal to the YX line.
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The eight Ci around X, which are the scalar products of the position vector
−−→
O ′X with

the appropriate NNVs, are just twice the coordinates, with a shift due to the position of O ′:
Ci = 2a′

i , (where a′
i = ai−αi , a1 = 1, aj = 0 for j �= 1). The corresponding quantitiesFj , F j

around Y , Y , corresponding to the vectors
−−→
O ′Y and

−−→
O ′Y , are Fj = 2ζ − 2b′

j , F j = 2ζ − 2b
′
j ,

with b′
j = bj − αj where the bj are the coordinates of Y , ζ = −−→

O ′Y · −→
T /2 = 1/4

∑
k b

′
k and

similarly for Y . In the translation by the full NV,
−→
T , from Y to Y the shift of each bj is 1/2

and thus the shift of ζ is one (
−→
T has squared length 2). So the shift of each Fj is also one.

The same shift of one will affect each Ci when translating X by one full
−→
T . Moreover, if we

compute in X the analogue of ζ , namely z = −−→
O ′X · −→T /2 = 1/4

∑
k a

′
k , we have ζ = z− 1/2,

ζ = z + 1/2.
Among the 64 distinct NVs around X (or any other point similar to X, for that matter)

that allow reaching a nonlinear site like Y , each one is orthogonal to 35 of the others,
and has a scalar product ±1 with the 28 remaining ones. For instance, the NV

−→
T =

(1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2) is orthogonal to the 35 ones having four coordinates
1/2 and four −1/2 (counting opposite vectors only once) and has scalar product 1, say, with the
28 NVs having six coordinates 1/2 and two−1/2, defining thus 28 points forming an equilateral
triangle with X and Y (and 28 others forming an equilateral triangle with X and Y ). Let us call
W a variable defined at one of the sites forming an equilateral triangle with X and Y . To be
specific let us choose the point W23 such that the vector

−−−→
W23X is one-half the NV with negative

signs in second and third positions, W23 = (3/4, 1/4, 1/4,−1/4,−1/4,−1/4,−1/4,−1/4).
(We chose the second and third positions rather than the first purely for aesthetic reasons,
in order to stay as close to the origin as possible, but a W with one index 1 is just as
good as any other one, since the origin is by no means a special point). The symmetric
W̃23 = (5/4,−1/4,−1/4, 1/4, 1/4, 1/4, 1/4, 1/4) of W23 with respect to X is also a valid
point to define a nonlinear variable, and forms an equilateral triangle with X and Y . Note,
however, that the points in the XYW23 two-dimensional plane that form a regular hexagon
of centre X with Y , Y , W23 and W̃23, namely (1, ε/2, ε/2, 0, 0, 0, 0, 0) for ε = ±1, are not
midpoints of τ in NNN positions and no nonlinear variables can be defined there.

In order to define a variable like X through (3.1) we need two products φ involving
four τ . It turns out that just six well chosen τ suffice to define all three variables X,
Y and W : the two τ+− and τ−+ at (1/2, 1/2,−1/2,−1/2,−1/2,−1/2,−1/2,−1/2) and
(1/2,−1/2, 1/2,−1/2,−1/2,−1/2,−1/2,−1/2) (the indices refer to the signs of the second
and third coordinates) and the four τ2,ε and τ3,ε (ε = ±1) at the points (1, ε, 0, 0, 0, 0, 0, 0)
and (1, 0, ε, 0, 0, 0, 0, 0). Indeed, X is the midpoint of the two NNN pairs {τi+, τi−} i = 2, 3
while Y is that of the NNN pairs {τ+−, τ2−}, {τ−+, τ3−} and W that of the pairs {τ+−, τ3+}
and {τ−+, τ2+}. Note that the vectors −−−−→τ−+τ+−, −−−→τ2−τ3− and −−−→τ3+τ2+ are all equal to the vector−→
S = (0, 1,−1, 0, 0, 0, 0, 0) and that any two of these three vectors form a square. The whole

picture is a triangular right prism having the six τ at its vertices. Each basis {τ−+, τ2−, τ3+}
and {τ+−, τ3−, τ2+} of this prism is an equilateral triangle of side

√
2, while the height

−→
S has

the same length so the three faces are the aforementioned squares having for centres the points
X, Y and W23 respectively.

Next we compute the Ci corresponding to the pairs around X, scalar products of
−−→
O ′X with

the corresponding NNVs (0, 2, 0, 0, 0, 0, 0, 0) and (0, 0, 2, 0, 0, 0, 0, 0) and find 2a′
i , i = 2, 3

respectively. The relevant Fj around Y corresponding to the pairs {τ+−, τ2−}, {τ−+, τ3−} are
F2 = 2ζ − 2b′

2 and F3 = 2ζ − 2b′
3. The relevant Km around W23 correspond to the pairs

{τ−+, τ2+}, {τ+−, τ3+} and turn out to be K2 = −2z+1/2−c′
2 +c′

3 and K3 = −2z+1/2+c′
2 −c′

3
respectively (again c′

m = cm − αm where the cm are the coordinates of W23). The origin of the
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1/2 shift comes from the analogue of z computed at W23 using the cm, which turn out to be
z − 1/4.

Up to this point, this is a purely geometric description. We have not yet expressed the f, g

in terms of the Cj . We have X by specifying i = 3, j = 2 in (3.1)

X = f (C2)φ3 − f (C3)φ2

g(C2)φ3 − g(C3)φ2
(3.3)

with φi = τi+τi−. Solving for the ratio of τ we find
τ2+τ2−
τ3+τ3−

= g(C2)X − f (C2)

g(C3)X − f (C3)
. (3.4)

Similarly, we have
τ+−τ2−
τ−+τ3−

= g(F2)Y − f (F2)

g(F3)Y − f (F3)
(3.5)

and
τ−+τ2+

τ+−τ3+
= g(K2)W23 − f (K2)

g(K3)W23 − f (K3)
. (3.6)

It is straightforward to eliminate all the τ from (3.4)–(3.6) and find the contiguity relation
g(C3)X − f (C3)

g(C2)X − f (C2)

g(F2)Y − f (F2)

g(F3)Y − f (F3)

g(K2)W23 − f (K2)

g(K3)W23 − f (K3)
= 1. (3.7)

This is what we call a Miura transformation: given any two of the X, Y and W23 we can obtain
the third one. It is clear from (3.7) that all three variables play a symmetric role. From (3.7) the
nonlinear equations satified by Y , Y and X can be derived from the analysis of the geometry.

4. Compatibility conditions and the nonlinear equations

We still have not considered the compatibility of the Hirota–Miwa equations (3.2). It will
in fact turn out to be simpler to check their consistency on the Miura equations (3.7).
Indeed, if two variables are known on two summits of an equilateral triangle of side

√
2/2,

the one on the third summit is determined by (3.7). If we consider a tetrahedron of the
same side, then any two variables determine both the others, using (3.7) on the two sides
which contain the two known variables. But then there are two more sides where all three
variables are now determined, and a compatibility condition must be satisfied on them.
Such a tetrahedron is, for instance, the one with apices X, Y , W23 and W24 of coordinates
(3/4, 1/4,−1/4, 1/4,−1/4,−1/4,−1/4,−1/4). It turns out that the condition on the even
functions f and g for the compatibility to be satisfied is that there exists some odd function h

such that

f (C)g(D) − f (D)g(C) = h(C + D)h(C − D) (4.1)

for all C, D. Obtaining the general solution of (4.1) appears to be a very difficult task.
However, we are able to find several interesting solutions. In particular, let us make the
simplifying assumption that g is constant (which we can take equal to 1). In this case we can
show that (4.1) has only two solutions (up to a rescaling of the dependent and independent
variables). The first corresponds to f (x) ≡ x2 and h(x) ≡ x, leading to a difference discrete
Painlevé equation with seven parameters. The second corresponds to f (x) ≡ sinh2 λx and
h(x) ≡ sinh λx and leads to a q-type equation. In these cases (3.7) becomes respectively

X − C2
3

X − C2
2

Y − F 2
2

Y − F 2
3

W23 − K2
2

W23 − K2
3

= 1 (4.2)

X − sinh2 C3

X − sinh2 C2

Y − sinh2 F2

Y − sinh2 F3

W23 − sinh2 K2

W23 − sinh2 K3
= 1. (4.3)
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In the general case we can exhibit one solution, but we cannot prove that it is the only existing
one. This solution is expressed in terms of theta functions. Indeed (4.1) is satisfied if we take
f (x) ≡ θ2

1 (κx|m), g(x) ≡ θ2
0 (κx|m) and h(x) ≡ θ0(0|m)θ1(κx|m) for arbitrary parameter

m. Using these expressions f , g, h one can write the Miura (3.7) in terms of Jacobi elliptic
functions only, and the same is true for the nonlinear equation betweenY ,X andY . Indeed, (3.7)
becomes (up to a renormalization of X, Y and W23)

X − sn2C3

X − sn2C2

Y − sn2F2

Y − sn2F3

W23 − sn2K2

W23 − sn2K3
= θ2

0 (C2)

θ2
0 (C3)

θ2
0 (F3)

θ2
0 (F2)

θ2
0 (K3)

θ2
0 (K2)

(4.4)

where we have dropped the parameter m. Moreover, one can check that the six quantities C,
F , K have zero sum and moreover satisfy the relations C2 −C3 = F3 −F2 = K3 −K2. In this
case one can show that the rhs of (4.4) can in fact be written in terms of Jacobi elliptic functions
only. We can parametrize the six quantities C, F , K as C3,2 = α−β ±2s, F2,3 = β −γ ±2s,
K2,3 = γ − α ± 2s, with α + β + γ = 0, and we find that (4.4) becomes

X − sn2(α − β + 2s)

X − sn2(α − β − 2s)

Y − sn2(β − γ + 2s)

Y − sn2(β − γ − 2s)

W23 − sn2(γ − α + 2s)

W23 − sn2(γ − α − 2s)

=
(

1 − m2sn2(α − s)sn2(β + s)

1 − m2sn2(α + s)sn2(β − s)

1 − m2sn2(β − s)sn2(γ + s)

1 − m2sn2(β + s)sn2(γ − s)

×1 − m2sn2(γ − s)sn2(α + s)

1 − m2sn2(γ + s)sn2(α − s)

)2

(4.5)

where we can explicitly see that in the limit m → 0 the rhs recovers the value unity.
Suppose we now consider some other equilateral triangle, one summit of which is X,

but where Y is not necessarily a summit. Around this triangle we will get an analogue
of equation (3.7). In particular, we are interested in the triangle XW23V where V has
coordinates (5/4, 1/4, 1/4, 1/4,−1/4,−1/4,−1/4,−1/4) so

−→
XV is orthogonal to

−→
YX.

Eliminating W23 between the Miura in these two triangles, one can obtain a Miura in the
isosceles right triangle YXV . One can easily convince oneself that this relation is still linear
separately in Y and V (but no longer in X). On the other hand, the point W̃78 of coordinates
(5/4, 1/4, 1/4, 1/4, 1/4, 1/4,−1/4,−1/4) forms an equilateral triangle not only with X and
Y (as any W̃ does), but also with X and V . So just as in the above construction, one can
obtain a Miura in the isosceles right triangle VXY , which is linear separately in V and Y .
Eliminating V leads to a relation involving only Y , X and Y , which is still linear separately
in Y and Y , though not in X. We thus obtain the first half of the nonlinear equation. Working
around Y one could have found a similar relation between X, Y and X, where X is the point
of coordinates (1/2,−1/2,−1/2,−1/2,−1/2,−1/2,−1/2,−1/2) such that

−→
XX is one full

step
−→
T .
The construction we just presented allows one to derive the nonlinear equation. It goes

without saying that the bulk of computations is considerable and, as a matter of fact, in the
case of the elliptic discrete Painlevé equation, prohibitively so. Thus we shall not present its
explicit form and limit ourselves to those of the q- and δ-equations. Below we present just their
final forms, which are obtained after the appropriate scalings of the dependent and independent
variables are introduced.

For the q equation we shall use the notation qn = q0λ
n and ρn = qn/

√
λ. We start

from eight constants di with the constraint that their product is unity. Let m1, m2, . . . , m7 be
the elementary symmetric functions of order 1 to 7, i.e. m1 = ∑

i di , m2 = ∑
i<j didj (the

constraint meaning m8 = ∏
i di = 1) of these eight constants. Then the equations are
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(yn+1ρn+1qn − xn)(ynρnqn − xn) − (ρ2
n+1q

2
n − 1)(ρ2

nq
2
n − 1)

(yn+1/(ρn+1qn) − xn)(yn/(ρnqn) − xn) − (1 − 1/(ρ2
n+1q

2
n))(1 − 1/(ρ2

nq
2
n))

= (x4
n − m1qnx

3
n + (m2q

2
n − 3 − q8

n)x
2
n + (m7q

7
n − m3q

3
n + 2m1qn)xn

+q8
n − m6q

6
n + m4q

4
n − m2q

2
n + 1)

{x4
n − m7x

3
n/qn + (m6/q

2
n − 3 − 1/q8

n)x
2
n + (m1/q

7
n − m5/q

3
n + 2m7/qn)xn

+1/q8
n − m2/q

6
n + m4/q

4
n − m6/q

2
n + 1}−1 (4.6a)

(xn−1ρnqn−1 − yn)(xnρnqn − yn) − (ρ2
nq

2
n−1 − 1)(ρ2

nq
2
n − 1)

(xn−1/(ρnqn−1) − yn)(xn/(ρnqn) − yn) − (1 − 1/(ρ2
nq

2
n−1))(1 − 1/(ρ2

nq
2
n))

= (y4
n − m7ρny

3
n + (m6ρ

2
n − 3 − ρ8

n)y
2
n + (m1ρ

7
n − m5ρ

3
n + 2m7ρn)yn

+ρ8
n − m2ρ

6
n + m4ρ

4
n − m6ρ

2
n + 1)

{y4
n − m1y

3
n/ρn + (m2/ρ

2
n − 3 − 1/ρ8

n)y
2
n + (m7/ρ

7
n − m3/ρ

3
n + 2m1/ρn)yn

+1/ρ8
n − m6/ρ

6
n + m4/ρ

4
n − m2/ρ

2
n + 1}−1. (4.6b)

For the δ-equation we shall use the notation zn = z0 + nδ and ζn = zn − δ/2. Here we start
from eight constants ki with the constraint that their sum is zero. Let s2, s3, . . . , s8 be their
elementary symmetric functions of order 2 to 8 (from the constraint, s1 = ∑

i ki = 0). Then
the equations are

(xn − yn+1 + (zn + ζn+1)
2)(xn − yn + (zn + ζn)

2) + 4xn(zn + ζn+1)(zn + ζn)

(zn + ζn)(xn − yn+1 + (zn + ζn+1)2) + (zn + ζn+1)(xn − yn + (zn + ζn)2)

= 2
x4
n + S2x

3
n + S4x

2
n + S6xn + S8

8znx3
n + S3x2

n + S5xn + S7
(4.7a)

where the Si are the elementary symmetric functions of the quantities ki + zn (which are
essentially what was called Ci in section 3), so S2 = 28z2

n + s2, S3 = 56z3
n + 6zns2 + s3, etc

(and 8zn = S1);

(yn − xn−1 + (zn−1 + ζn)
2)(yn − xn + (zn + ζn)

2) + 4yn(zn + ζn)(zn−1 + ζn)

(zn + ζn)(yn − xn−1 + (zn−1 + ζn)2) + (zn−1 + ζn)(yn − xn + (zn + ζn)2)

= 2
y4
n + 02y

3
n + 04y

2
n + 06yn + 08

8ζny3
n + 03y2

n + 05yn + 07
(4.7b)

where the 0i are the elementary symmetric functions of the quantities ζn − ki (which are
essentially the Fi of section 3), so 02 = 28ζ 2

n +s2, 03 = 56ζ 3
n +6ζns2 −s3, etc (and 8ζn = 01).

System (4.7) can be obtained from (4.6) by a coalescence process. Here we shall follow
the convention [2] of using upper-case letters for the ‘higher’ equation, here (4.6), and lower-
case letters for ‘lower’, here (4.7). Indeed, we take Q0 = eεz0 , 2 = 1 + εδ, X = 2 + ε2x,
Y = 2 + ε2y, Di = eεki . In the limit ε → 0 (so that from q and ρ we obtain (Qn − 1)/ε → zn,
(Rn −1)/ε → ζn) we recover (4.7) for x and y. This calculation is quite delicate since the first
few orders in the expansions of numerators and denominators on both sides of (4.6) vanish
and one has to go up to order 8 in ε before finding all significant quantities.

Another coalescence can lead from (4.6) to a known q-PVI equation related to the affine
Weyl group E

(1)
7 . We take X = 4x, Y = 4y, with 4 → ∞. Among the eight quantities Di

we take four large ones (∝4), and four small ones (∝1/4). Then the elementary symmetric
functions behave, at the dominant term, like powers of 4. In fact, up to such powers, M1, M2,
M3 become the three first elementary symmetric functions m1, m2, m3 of the four ‘large’ Di ,
and M7, M6 M5 those, namely n1, n2, n3, of the inverse of the four ‘small’ ones, while M4

becomes the common value p of the products. At the limit, keeping only the dominant terms,
(4.6) becomes
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(yn+1Rn+1Qn − xn)(ynRnQn − xn)

(yn+1/(Rn+1Qn) − xn)(yn/(RnQn) − xn)

= x4
n − m1Qnx

3
n + m2Q

2
nx

2
n − m3Q

3
nxn + pQ4

n

x4
n − n1x3

n/Qn + n2x2
n/Q

2
n − n3xn/Q3

n + p/Q4
n

(4.8a)

(xn−1RnQn−1 − yn)(xnRnQn − yn)

(xn−1/(RnQn−1) − yn)(xn/(RnQn) − yn)

= y4
n − n1Rny

3
n + n2R

2
ny

2
n − n3R

3
nyn + pR4

n

y4
n − m1y3

n/Rn + m2y2
n/R

2
n − m3yn/R3

n + p/R4
n

. (4.8b)

Then let us replace the y by their inverse. System (4.8) becomes

(Rn+1Qn − xnyn+1)(RnQn − xnyn)

(1/(Rn+1Qn) − xnyn+1)(1/(RnQn) − xnyn)

= x4
n − m1Qnx

3
n + m2Q

2
nx

2
n − m3Q

3
nxn + pQ4

n

x4
n − n1x3

n/Qn + n2x2
n/Q

2
n − n3xn/Q3

n + p/Q4
n

(4.9a)

(xn−1ynRnQn−1 − 1)(xnynRnQn − 1)

(xn−1yn/(RnQn−1) − 1)(xnyn/(RnQn) − 1)

= 1 − n1Rnyn + n2R
2
ny

2
n − n3R

3
ny

3
n + y4

npR
4
n

1 − m1yn/Rn + m2y2
n/R

2
n − m3y3

n/R
3
n + y4

np/R
4
n

. (4.9b)

Inverting both sides of (4.9b), gauging the x and y through xn → xnp
1/4/Qn, yn →

ynp
−1/4/Rn and redefining qn = Q2

n, ρn = R2
n we obtain the system

(xnyn+1 − qnρn+1)(xnyn − qnρn)

(xnyn+1 − 1)(xnyn − 1)
= x4

n − m1qnx
3
n + m2q

2
nx

2
n − m3q

3
nxn + q4

n

x4
n − n1x3

n + n2x2
n − n3xn + 1

(4.10a)

(xn−1yn − qn−1ρn)(xnyn − qnρn)

(xn−1yn − 1)(xnyn − 1)
= y4

n − m3ρny
3
n + m2ρ

2
ny

2
n − m1ρ

3
nyn + ρ4

n

y4
n − n3y3

n + n2y2
n − n1yn + 1

(4.10b)

which is the equation we introduced in [11] under the name of asymmetric q-PVI. From (4.7)
a similar coalescence would lead to the other equation associated with the affine Weyl group
E

(1)
7 and introduced in [11], namely the asymmetric d-PV.

Before completing this section we mention one last degeneration, that of the elliptic
equation towards the q equation. Since we have not given the explicit form of the elliptic-
discrete P we shall present the coalescence at the level of the Miura transformations. We start
from (4.4) and consider the limit m → 0. At this limit the elliptic sines go over to circular
sines and moreover θ0 → 1. Thus, taking κ = iλ (and with a sign change of X, Y,W23) we
recover exactly (4.3).

While all the discrete Painlevé equations obtained here have eight parameters, their
continuous limit is just PVI (which has four parameters and one continuous independent
variable). As a matter of fact, all discrete P associated with the affine Weyl groups E

(1)
8 ,

E
(1)
7 and E

(1)
6 [14] have PVI as the continuous limit (although they contain more parameters

than PVI, to begin with). On the other hand, the asymmetric q-PIII equation [15], described
by the group D5, contains exactly the same number of parameters as PVI and was, in fact,
historically the first discrete form of PVI discovered.

5. Conclusion

In this paper we have presented the geometric construction of the eight-parameter discrete
Painlevé equation. This approach, based on affine Weyl groups, is particularly interesting in
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the present case because, given the complexity of the equations, there is no possibility to obtain
them through a brute-force calculation. As a matter of fact, this is the very first instance where
the geometrical approach has allowed construction of a previously unknown discrete Painlevé
equation.

One important result obtained here, and which is unique (in the sense that it cannot exist
for d-P not described in E

(1)
8 ), is the construction of elliptic-discrete P. Their existence was

first proven rigorously by Sakai in [7]. Here we have presented the explicit construction in
the bilinear case and also up to the Miura level for the nonlinear variables. However, the
complexity (and sheer bulk) of computations did not allow us to produce the explicit form of
the elliptic d-P in nonlinear variables.

Having obtained the basic discrete Painlevé equations does not exhaust the possibilities
related to the geometry of E

(1)
8 . It is possible, within the same space of the weights of E

(1)
8 ,

to define evolutions along more complicated paths and obtain more second-order discrete P

(just as we have done for simpler Weyl groups). Given the richness of the E
(1)
8 group this is

a project that must be undertaken with extreme care. We intend to return to this question in
some future work, once the analogous studies in E

(1)
7 and E

(1)
6 have first been carried through.
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